Deactivation of Akt by a small molecule inhibitor targeting pleckstrin homology domain and facilitating Akt ubiquitination

Hakryul Jo, Pang-Kuo Lo, Yitang Li, Fabien Loison, Sarah Green, Jake Wang, Leslie E. Silberstein, Keqiang Ye, Hexin Chen, and Hongbo R. Luo

*Department of Pathology, Harvard Medical School, Dana–Farber/Harvard Cancer Center, Boston, MA 02115; †Department of Biological Sciences, University of South Carolina, Columbia, SC 29208; and ‡Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322

Edited* by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved March 11, 2011 (received for review December 6, 2010)

The phosphatidylinositol-3,4,5-triphosphate (PIP3) binding function of pleckstrin homology (PH) domain is essential for the activation of oncogenic Akt/PKB kinase. Following the PIP3-mediated activation at the membrane, the activated Akt is subjected to other regulatory events, including ubiquitination-mediated deactivation. Here, by identifying and characterizing an allosteric inhibitor, SC66, we show that the facilitated ubiquitination effectively terminates Akt signaling. Mechanistically, SC66 manifests a dual inhibitory activity that directly interferes with the PH domain binding to PIP3 and facilitates Akt ubiquitination. A known PH domain-dependent allosteric inhibitor, which stabilizes Akt, prevents the SC66-induced Akt ubiquitination. A cancer-relevant Akt (e17k) mutant is unstable, making it intrinsically sensitive to functional inhibition by SC66 in cellular contexts in which the P3K inhibition has little inhibitory effect. As a result of its dual inhibitory activity, SC66 manifests a more effective growth suppression of transformed cells compared with other inhibitors of PIP3/Akt pathway. Therefore, this study offers validation for the chemical-assisted ubiquitination as a legitimate strategy to terminate Akt signaling.

Results

Cell-Based Screening Identifies a Compound that Directly Facilitates Akt Ubiquitination. To better understand the regulatory mechanisms of the PIP3/Akt pathway, we carried out an image-based chemical screening by using the spatial distribution of Akt1 PH domain/EGFP fusion protein (PH-EGFP) as a read-out (to be described elsewhere). This screening identified a group of 12 chemicals (termed group II) that not only prevented the membrane translocation of PH-EGFP, but also induced its accumulation into a subcellular location reminiscent to the pericentrosomal region (Fig. S1 and Dataset S1). Interestingly, the compounds SC13, SC66, and SC67 contain a pyridine moiety that is also found in some chemicals known to inhibit Akt (17, 18). In this study, we focused on characterizing SC66 as a representative of this group of compounds. First, we confirmed that this subcellular location indeed represented the pericentrosomal region by immunostaining with γ-tubulin, a centrosomal marker (Fig. L4). The SC66-induced pericentrosomal accumulation was specifically mediated by Akt PH domain, as EGFP alone or EGFP fused to PH domain from PLC-8 had no effect (Fig. L4). Other group II compounds also showed no effect on the membrane localization of PH-PLC6-EGFP (Fig. S2). The level of PIP3 at the membrane did not affect the SC66-induced pericentrosomal localization, as cotreatment with IGF1 or P13K inhibitor failed to yield any differential effects. Likewise, a PIP3-nonbinding mutant PH (r25c)–EGFP was also accumulated in the pericentrosomal region. As revealed by co-localization with PH-EGFP, the full-length Akt1 could be also accumulated in this region by SC66 and other group II compounds (Fig. L4 and Fig. S3). To test if SC66 could inhibit the Akt signaling pathway, HEK293T cells, which were shown to contain a high level of PIP3 (19), were treated with different amounts of SC66, and the whole-cell lysates were examined for the phosphorylation level of Akt and its known target proteins (Fig. 1B). At a concentration that led to the pericentrosomal accumulation, SC66 significantly reduced the phosphorylation level of both Akt and its targets, but not those of other cellular kinases. Importantly, unlike the Akt phosphorylation at S473, the phosphorylation at
Next, we sought to determine the mechanisms of group II-mediated ubiquitination of Akt. We measured the level of total Akt in both HeLa cells treated with SC66, a robust accumulation of the ubiquitinated Akt by SC66 could be targeted for proteasome-mediated degradation. Some group II compounds, in varying degrees, could interfere with the PH domain binding function of PH domain. To test this idea, purified PH-EGFP was incubated with PI3P-coated beads in the presence of group II compounds. The amount of PH-EGFP brought down by the PI3P beads would be inversely correlated with the inhibitory activity of a compound toward the PH domain binding function of PH domain (Fig. S4D). This assay implicated that all group II compounds, in varying degrees, could interfere with PH domain binding to PI3P in vitro.

One of the important functions of the pericentrosomal region is the recycling and degradation of cellular proteins (21). The accumulation of Akt in this region may reflect its degradation through the ubiquitin-mediated proteasomal pathway. Indeed, when HEK293 cells stably expressing Akt1, HEK293-Akt1, were treated with SC66, a robust accumulation of the ubiquitinated Akt was observed (Fig. 1C). The level of SC66-induced Akt ubiquitination was further increased by cotreatment with the proteasome inhibitor MG132. A similar result was also observed with the endogenous Akt in HeLa cells (Fig. S5A). A longer treatment of SC66 decreased the level of total Akt in both HeLa and HEK293T cells (Fig. S5B). Together, these results confirmed that the ubiquitinated Akt by SC66 could be targeted for proteasome-mediated degradation. Some group II compounds also led to the accumulation of ubiquitinated Akt (Fig. S5C). Of note is the finding that SC67, which is structurally similar to SC66 (Fig. S1), led to a much weaker accumulation of ubiquitinated Akt. All group II compounds, including SC66, did not display any significant inhibitory effects toward the cellular proteasome or deconjugation (i.e., deubiquitination) activity.
SC66 was added to preincubate with AKTi-VIII, the subsequent ubiquitination could be affected by this inhibitor. Surprisingly, when the lysates were incubated with SC66. After removal of the compound by extensive washing, the resulting immune complex was subject to in vitro ubiquitination in the presence of fresh cell lysates (Fig. 1D). Intriguingly, the pre-treatment of drug alone was found to be sufficient, indicating that the drug-bound Akt was amenable (or primed) for the subsequent ubiquitination.

The efficiency of ubiquitination could be dependent upon the conformation(s) of target protein. To test if this is the case for the SC66-induced Akt ubiquitination, we took advantage of a known PH domain-dependent allosteric Akt inhibitor, AKTi-VIII (22), and asked if the SC66-induced Akt ubiquitination could be affected by this inhibitor. Surprisingly, when the lysates were preincubated with AKTi-VIII, the subsequent ubiquitination by SC66 was almost completely abolished (Fig. 1E). When SC66 was added first, followed by AKTi-VIII, Akt ubiquitination was also affected, but to a lesser extent. Other chemicals known to inhibit Akt functions failed to show any inhibitory effects (Fig. S6D). Together, these results confirm that SC66 directly facilitates Akt ubiquitination.

SC66 Functionally Inhibits a Cancer-Relevant Akt1 (e17k) Mutant.

A gain-of-function mutation in PH domain (e17k) of Akt1 has been previously reported, when expressed in HEK293 cells, compared at T450 as the WT (Fig. S9D). This result was consistent with their relative activity to induce Akt ubiquitination (Figs. S5C and S6C). To test if SC66 could inhibit the membrane localization of this mutant PH domain, the PH (e17k)–EGFP was expressed in HeLa cells and live cell imaging was performed. The membrane localization of PH (e17k)–EGFP was insensitive to inhibition of PI3K, as previously reported (23). However, SC66 effectively prevented its membrane localization whereas SC67 showed little inhibitory effect (Fig. 2B). When similar experiments were done with the WT PH–EGFP, both compounds effectively prevented the membrane localization (Fig. S8). Intriguingly, however, the pericentrosomal localization was more prominent in the presence of SC66. This result appears to be consistent with their relative activity in inducing Akt ubiquitination. Both SC66 and SC67 contained the pyridine moiety, and some Akt inhibitors were also shown to have this moiety (17, 18). Therefore, we also tested other pyridine-containing compounds represented in the screening library. At the comparable amount, none of these other compounds showed any inhibitory effect (Fig. 2B).

Next, we examined if Akt1 (e17k) could be also ubiquitinated by SC66. Compared with WT, Akt1 (e17k) displayed a slightly faster kinetics of ubiquitination, and the phosphorylated (S473) Akt could be also ubiquitinated in this in vitro reaction. It has been shown that phosphorylation at turn motif (T450) by mTor2 complex regulates Akt maturation and stability (24, 25). However, Akt1 (e17k) showed a comparable level of phosphorylation at T450 as the WT (Fig. S9A). Nonetheless, compared with the

Fig. 2. SC66 functionally inhibits a cancer-relevant Akt1 (e17k) mutant. (A) HEK293 cells stably expressing Akt1 (e17k) mutant were treated with different amounts (2, 4, 8 μg/mL) of SC66 or SC67 for 1 h, followed by Western blot for phospho-Akt (S473). (B) Hela cells expressing PH (e17k)–EGFP were treated with LY294002 (40 μM) or indicated compounds (4 μg/mL) in the presence of IGF1. The relative intensity of membrane PH (e17k)–EGFP between time 0 and 60 min was quantified. The arrows indicate the pericentrosomal accumulation of PH(e17k)–EGFP. (C) HEK293-Akt1 (e17k) cells were pretreated with LY294002 or AKTI-VIII for 30 min followed by SC66 treatment for an additional 2 h, and the cytosolic extracts were analyzed for phospho-Akt and ubiquitinated Akt1 (e17k) (Left). Hela cells transfected with Akt1 (e17k) were treated with AKTI-VIII, SC66, or a combination of the two for 2 h. The representative immunostaining for Akt1 (e17k) is shown (Right). (D) Hela cells cotransfected with EGFP-Foxo and Akt1 (e17k) were treated with different amounts of LY294002, SC66, or a combination of the two. The coexpression cells were identified by immunostaining for Akt1 (e17k). The relative intensity of cytosolic versus nuclear EGFP-Foxo was determined and scored as cytosolic (>1.1), equal (1.0–0.9), or nuclear (<0.9; Right).
WT, Akt1 (e17k) was found to be unstable in the presence of 17 AAG, an inhibitor of HSP90. The instability of Akt1 (e17k) upon inhibition of HSP90 was not affected by cellular level of PIP3, as neither wortmannin nor LY294002 led to a significant difference. However, the allosteric Akt inhibitor, AKTi-VIII, significantly inhibited the degradation of this mutant Akt1, indicating this inhibitor acts as a stabilizer (Fig. S9B). Similarly, we examined the effects of cellular PIP3 level and Akt conformation on the SC66-induced ubiquitination. The pretreatment of AKTi-VIII, but not LY294002, almost completely inhibited the SC66-induced ubiquitination of Akt1 (e17k) (Fig. 2C). This differential effect was consistent with their respective inhibitory activity toward the SC66-induced in vitro Akt ubiquitination (Fig. 1E). To examine this effect at the cellular level, HeLa cells expressing Akt1 (e17k) were treated with AKTi-VIII, SC66, or a combination of the two, and immunostaining was performed. In control cells, Akt1 (e17k) was predominately at the membrane, and nuclear localization was also evident. AKTi-VIII dramatically perturbed this cellular localization, making it evenly distributed throughout the cytoplasm (Fig. 2C). In the presence of SC66, the level of membrane-associated and cytosolic Akt1 (e17k) was reduced, with a prominent increase in the nucleus. Importantly, when combined, the pattern of its localization resembled that of AKTi-VIII treatment alone (Fig. 2C).

The finding that SC66 was effective toward the Akt1 (e17k) mutant has an important implication, as human cancers carrying this mutation would be resistant to any therapeutic manipulations to reduce the PIP3 level. Therefore, we next compared the efficacy of SC66 with LY294002 in inhibiting Akt1 (e17k) function. When coexpressed with Akt1 (e17k), EGFP-Foxo was predominantly localized in the cytoplasm even in the presence of LY294002, confirming the resistance of Akt1 (e17k) toward PI3K inhibitor. However, in the presence of SC66, a significant portion of EGFP-Foxo was localized to the nucleus. A subsequent immunostaining confirmed that only those cells expressing Akt1 (e17k) were refractory to LY294002, whereas such cells were still sensitive to SC66 (Fig. S10).

The mechanisms by which LY294002 and SC66 inhibit activation of Akt are completely different (i.e., inhibition of PIP3 production vs. PH domain binding to PIP3). Therefore, these two drugs should enhance the inhibitory activity toward Akt1 (e17k) function when combined. To test this possibility, EGFP-Foxo was cotransfected with Akt1 (e17k) and treated with different amounts of LY294002, SC66, or a combination of the two. The localization of EGFP-Foxo in cells expressing Akt1 (e17k) was analyzed and scored as cytosolic, equal, or nuclear to reflect the strength of functional inhibition of Akt1 (e17k) (Fig. 2D). Consistent with the previous findings, even at a high concentration of LY294002, most EGFP-Foxo was localized to the cytoplasm. The majority of EGFP-Foxo at lower concentration of SC66 alone was equally distributed in the cytoplasm and nucleus. However, when combined with LY294002, the proportion of cells containing nuclear EGFP-Foxo was substantially increased.

SC66 Enhances Cancer Cell Death Mediated by PI3K Inhibition. Previously, we established deactivation of Akt as a crucial mediator of cancer cell death (26). Accordingly, we evaluated the pharmacological properties of SC66 as a potential anticancer agent. Inhibition of Akt is known to suppresses the motility of cancer cells (27). Similar to LY294002 and AKTi-VIII, SC66 but not SC67 effectively inhibited the migration of HeLa cells (Fig. 3A and Fig. S11A and B). To examine the effects on cell proliferation/death, we used time-lapse imaging, which allowed us to monitor the mitotic and apoptotic cells in a real-time fashion (28).

Fig. 3. SC66 enhances cancer cell death mediated by PI3K inhibition. (A) Confluent HeLa cells were scratched and, following a 10-min recovery, the indicated chemicals were added and incubated for 6 h. The quantification is presented in Fig. S11A. (B) Analysis of time-lapse live cell imaging of HeLa cells undergoing mitosis or apoptosis in the presence of indicated chemicals. HeLa cells treated with each chemical were imaged every 15 min for the duration of 14 h. Each frame was sequentially analyzed to identify cells entering mitosis (dotted circle) or undergoing apoptosis (dotted rectangle) within this time period. The percentage of these cell numbers in reference to initial cell numbers in each condition was presented. (C) HeLa cells transfected with EGFP-Foxo were treated with different amounts of LY294002 for 1 h (top) or incubated for 16 h followed by an additional 1-h incubation with LY294002 or SC66. The intensity of cytosolic and nuclear EGFP-Foxo was determined, and the percentage of cells with nuclear EGFP-Foxo was presented (P < 0.05, Student t test). (D) Representative pictures of time-lapse (14 h) live cell imaging of HeLa cells treated with LY294002, SC66, or a combination of the two. The quantification is presented in Fig. S13C. FACS analysis of HeLa cells treated with LY294002, SC66, or a combination of the two for 20 h. The quantification is presented in Fig. S13D.
As a measure of cell proliferation or death, we counted the number of cells entering mitosis or undergoing apoptosis during the 14-h imaging time. In control condition, approximately 45% of cells entered mitosis, which is consistent with a doubling time of 20 to 24 h in HeLa cells. In the presence of different inhibitors of PI3K, AKT1-VIII, or SC66, this percentage was reduced to 10% to 30%, confirming the growth-inhibitory property of these chemicals. Within this time period, no dramatic cell death could be observed with all chemicals tested, including SC66 (Fig. 3B).

The relative growth inhibition was correlated with the level of phosphorylated Akt in the presence of each compound (Fig. S12). When treated in HeLa cells grown in serum-rich conditions, SC66 effectively inhibited phosphorylation of both Akt and its targets. Importantly, consistent with their different mode of action in preventing Akt activation, a combined treatment of SC66 and LY294002 led to an efficient inhibition (Fig. S13A). PIP3 is required for various cellular processes, and cancer cells may activate the compensatory mechanisms when PI3K is inhibited. When treated with LY294002, the level of Akt phosphorylation reached the lowest level within the first 1 h, but was recovered in the next several hours. A similar trend was also observed with wortmannin, an irreversible PI3K inhibitor. Importantly, the kinetics and degree of recovery were almost identical between two different concentrations of wortmannin (Fig. S13B). Also, because both LY240002 and wortmannin were effective in inhibiting cell proliferation (Fig. 3B), the chemical instability alone did not explain this effect. Similarly, when HeLa cells were treated with LY294002, a prominent nuclear localization of EGFP-Foxo was observed within the first 1 h. However, after overnight treatment, most of EGFP-Foxo was localized to the cytoplasm of surviving cells (Fig. 3C). More importantly, when these HeLa cells were subsequently treated with the same amount of LY294002, only approximately 50% of cells displayed the nuclear EGFP-Foxo, indicating the activation of compensatory mechanisms. In contrast, when SC66 was administered to these cells, an efficient inhibition of Akt activity was still observed, confirming that LY294002-resistant Akt activation could be suppressed by SC66 (Fig. 3C). If SC66 effectively suppresses the reactivation of Akt in cancer cells that had survived the inhibition of PI3K, then the combined treatment would result in an enhanced apoptosis. We examined this effect by live cell imaging of HeLa cells treated with SC66 (Movie S1), LY294002 (Movie S2), or a combination of the two (Movie S3). Surprisingly, when combined in a concentration at which neither of the two drugs alone was effective, a dramatic cancer cell death was observed (Fig. 3D, Fig. S13 C and D, and Movie S3). This synergistic cell death was not restricted to epithelial cancer cells, but was also observed in HS-Sultan cells, a lymphoma cell line (Fig. S13E).

SC66 Manifests Anticancer Activity In Vitro and In Vivo. SC66 displays a dual-inhibitory function toward Akt activity: inhibition of the initial activation by interfering with PH domain binding to PIP3 and deactivation by facilitated ubiquitination. We reasoned that, because of this dual inhibitory activity, SC66 may manifest effective anticancer activity in cancer cells with a high level of PIP3 signaling. Consistent with this prediction, compared with control, SC66 preferentially suppressed the viability of HEK cells transformed by SV40 large T antigen (HEK293T) or oncogenic Ras (HEK-Ras), both of which retained elevated Akt signaling, even in the absence of serum growth factors (Fig. S14). In addition, at a comparable concentration, SC66 resulted in a more effective inhibition of phosphorylation of Akt and its target proteins compared with LY294002 and API-2, an Akt inhibitor (29) (Fig. 4A). This biochemical result was correlated with their relative growth inhibitory effect as determined by the cell viability assay (Fig. 4B). The anticancer activity of SC66 was further supported by its potent inhibitory effects on the colony formation of HEK293T cells grown on soft agar (Fig. 4C). Finally, by using the mouse xenograft tumor model, we tested if this anticancer activity could be extended to in vivo. Seven days after the inoculation of HEK293T cells, the mice

Fig. 4. SC66 manifests anticancer activity in vitro and in vivo. (A) HEK293T cells grown in serum-rich medium were treated with the indicated amounts of each compound for 1 h. The phosphorylation levels of Akt and its target proteins were examined. (B) HEK293T cells were treated with the indicated amounts of each compound for 16 h, and cell viability was determined by MTT assay. (C) Inhibitory effect of SC66 toward colony formation of HEK293T cells grown on soft agar. Representative image of wells following a 3-week culture in the presence of different amounts of SC66 is shown. Quantification is from three independent experiments. (D) HEK293T cells were inoculated into the nude mice, and the mice were treated with vehicle alone or two different concentrations of SC66. The growth of tumors was measured at the indicated time points. Representative images of dissected tumors after 28 d are shown. P values between paired groups (Student's t test) are as follows: control vs. SC66 15 mg/kg, P = 0.0209; control vs. SC66 30 mg/kg, P = 0.0190; and SC66 15 mg/kg vs. SC66 30 mg/kg, P = 0.0121.
were injected with SC66 twice per week and the size of tumors was measured every 3 d for 21 d. Compared with vehicle alone, SC66 led to a significant inhibition of tumor growth, confirming the anticancer property in vivo (Fig. 4C).

Discussion
In this study, we identified a group of chemicals that inhibit Akt activation through interfering with PH domain binding to PI3K, and lead to pericentrosomal localization of Akt. Altering the spatial distribution of Akt can lead to functional perturbation by affecting substrate recognition and facilitating dephosphorylation. Elucidating the mode of action of these compounds will undoubtedly provide important new insights into the regulatory mechanisms of unique dual inhibitory activity. SC66 manifested a more effective growth suppression of transformed cells compared with other inhibitors of PI3P/Akt pathway.

The phosphorylated Akt was found to be ubiquitinated in an in vitro assay. Intriguingly, the phosphorylated and ubiquitinated Akt could be hardly detectable in lysates from cells treated with SC66. Inhibition of initial phosphorylation by preventing Akt membrane translocation may explain this finding. However, given its efficacy toward Akt dephosphorylation in HEK293T cells, which contain a high level of PI(3,4,5)P3, also indicates other possibilities. For example, the phosphorylated Akt, when bound to SC66, might be rapidly dephosphorylated and/or the ubiquitinated Akt by SC66 might be less likely to be phosphorylated. This prediction would be consistent with its inhibitory effects toward Akt1 (e17k) mutant, which is “membrane-prone” independent of PI3K. Further studies, including the identification of cellular factors involved in SC66-mediated Akt ubiquitination, are needed to clarify these issues. As such, SC66 represents a unique chemical tool to investigate the mechanisms of ubiquitination-dependent Akt regulation in physiological and stressed conditions.

Materials and Methods
Cell Culture and Stable Cell Lines. For routine maintenance, all cell lines were cultured in medium supplemented with 10% FBS and 1% penicillin and streptomycin under 5% CO2. HEK293, HeLa, and their derivative cell lines were cultured in DMEM. Mouse 3T3-L1 cells were cultured in RPMI medium. HeLa cell lines stably expressing PH-EGFP were described previously (30). Other stable HEK293 cell lines expressing Akt1 mutants, Akt3, or PH-EGFP were generated by transfecting the corresponding expression plasmids and selected and maintained in the presence of G418 (Invitrogen).

Time-Lapse Live Cell Imaging for Spatial Distribution of PEGFP Fusion Proteins. HeLa cells transfected with the plasmids encoding the PEGFP fusion proteins were plated into a 35-mm glass-bottom dish (MatTek) and cultured for 24 to 48 h before imaging. For PH-EGFP membrane translocation assay, cells were serum-starved in 2 mL Leibovitz L15 medium for 1 to 2 h, which was replaced with 1 mL of fresh serum-free Leibovitz L15 medium containing each compound. After 30 min incubation, IGF1 (5 ng/mL) was added and an image was taken every 5 to 10 min under a 40× oil objective lens. The relative fluorescent intensity at the membrane versus adjacent cytoplasm (for PH-EGFP) or cytoplasm versus nucleus (for PEGFP-Foxo) was determined. Western blot and immunostaining, PI2P ELISA, in vitro PI2P binding, in vitro ubiquitination assay, time-lapse live cell imaging analysis for mitotic and apoptotic cells, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and other related assays are described in SI Materials and Methods.

Mouse Xenograft Experiment. Eight-week-old female NOD/SCID mice were used in this study. Fifteen mice received an i.c. injection of 2 × 106 293T cells in the both flanks. Seven days after injection, mice were randomized into three groups (n = 5 mice per group) to receive vehicle (control) or SC66 15 mg/kg or 30 mg/kg i.p. SC66 dissolved in DMSO was further diluted in 0.2 mL of PBS solution containing 25% ethanol for i.p. injections. SC66 was administered twice per week (total of six times). The size of tumor was measured three times per week by using a caliper, and mice were killed on day 28 after the injection of cancer cells. The tumor volumes were calculated as length × width2 × 0.52. Data are presented as the mean value. A Student t test was performed to evaluate the difference between mean values. P < 0.05 was considered to indicate a statistically significant difference.

ACKNOWLEDGMENTS. The authors thank all members of the H.R.L. laboratory. The screening was performed in the Institute of Chemistry and Cell Biology–Longwood Screening Facility. This study was supported by National Institutes of Health (NIH) Training Grant HL066987 (to H.J.); NIH Grants HL085100, AI076471, HL092020, and GM076084 (to H.L.); and Research Scholar grants from the American Cancer Society (to H.L. and H.C.).